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Abstract—The classification of ransomware remains a critical
yet challenging task in cybersecurity. Motivated by the increasing
sophistication and overlap in behaviors between ransomware and
general malware, this work addresses the need for more precise
differentiation methods to facilitate targeted mitigation efforts.
Our study proposes an innovative approach for ransomware
classification using sub-graph mining of Function Call Graphs
(FCGs). We employ Cuckoo Sandbox™ to extract dynamic API
calls and construct detailed FCGs. Through focused subgraph
mining, we isolate critical API call patterns specifically relevant
to ransomware behavior. These extracted patterns are then
vectorized and classified using a Convolutional Neural Network
(RansomNet-CNN), achieving high precision in distinguishing
ransomware from general malware. Unlike full-graph or flat-
sequence models, our subgraph-level approach precisely captures
ransomware-relevant behaviors. The RansomNet-CNN model
demonstrates superior performance, achieving a precision of 99%
and a recall of 100%, thus underscoring its practical effectiveness
in ransomware identification. The dataset and code are publicly
available at our Zenodo Repository1.

Index Terms—Ransomware, Malware, Classification, Cuckoo
Sandbox, Graph Analysis, CNN

I. INTRODUCTION

Malware [23] encompasses a variety of malicious software
designed to disrupt, damage, or gain unauthorized access to
computer systems, with ransomware [24] being particularly
devastating as it encrypts a victim’s data and demands a
ransom for decryption. The ability of ransomware to cause
immediate financial damage underscores the urgent need for
precise identification and tailored mitigation strategies.

In recent years, ransomware has evolved from opportunis-
tic attacks into highly targeted campaigns aimed at critical
infrastructure and public services. Recent studies reveal that
modern ransomware strains are increasingly engineered to
bypass static detection mechanisms, disable system backups,
and exploit zero-day vulnerabilities [29], [30]. This strategic
evolution necessitates detection systems capable of capturing
nuanced behavioral patterns beyond traditional signature-based
or binary classification methods. Among various sectors, the
healthcare industry has been particularly impacted, where
ransomware-induced downtime can directly threaten patient
safety. Unlike general malware, ransomware specifically tar-
gets and encrypts sensitive data—disrupting hospital work-

1Agarwal, G. (2024). RansomNet Dataset. Zenodo.
https://doi.org/10.5281/zenodo.11177440

flows and pressuring institutions to pay ransoms or face
prolonged operational paralysis. The growing threat is evident
from the increase in incidents targeting patient records, which
rose from 55% in 2015 to 64% in 2016 [25].

While these statistics highlight the urgency of de-
fending against ransomware, most machine learning-based
classification models approach the problem as a binary
task—differentiating ransomware from benign software [29].
This framing, however, ignores the fact that ransomware often
operates with behavioral signatures that overlap significantly
with other malware types [30]. Consequently, detection sys-
tems trained to simply detect ”maliciousness” may misclassify
ransomware as other malware types, delaying containment and
recovery strategies in real-time security workflows.

Despite advances in malware detection, existing methods of-
ten fall short in specifically identifying ransomware, due to its
sophisticated evasion techniques, encryption methods, and the
rapid evolution of attack vectors. Common challenges include
high obfuscation, the similarity to legitimate software leading
to false negatives, and rapidly changing attack signatures
that outpace traditional defenses. In addition, Ransomware
shares many operational tactics with general malware, such
as execution processes and network communications, which
can often be misleading when analyzed through static features
commonly used in traditional malware detection approaches
[3]. This overlap necessitates the exploration of more dynamic
and discriminative features to enhance detection.

To address this limitation and effectively tackle these chal-
lenges, we develop a novel method, RansomNet, that uses
dynamic analysis of post-execution API call patterns. This
approach allows us to capture more granular and temporal
behaviors that are indicative of ransomware, distinguishing it
from conventional malware. Specifically, we utilize Cuckoo
Sandbox™ [1] to extract and analyze detailed behavioral data
from API calls, constructing Function Call Graphs (FCGs) [31]
that visually represent these interactions. Subgraph mining
is then employed to isolate significant patterns within these
graphs, which are subsequently vectorized and analyzed using
a 1D Convolutional Neural Network (1D-CNN). This model
is specifically tailored to address the challenge of dynamic
feature analysis by efficiently processing complex data rep-
resentations and achieving high precision in distinguishing
ransomware from other malware types.
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Function Call Graphs (FCGs) enable a structured view
of runtime behavior, offering visibility into repeated action
motifs, system dependencies, and behavioral context that static
features or API sequences alone cannot expose. By combining
FCG subgraph analysis with a CNN classifier, RansomNet
provides a novel, behavior-aware approach to malware type
differentiation.

The contributions of our work are as follows:
• We enhance the precision of distinguishing between ran-

somware and general malware by analyzing distinctive
patterns in API call sequences.

• Our approach uses FCGs to visualize and analyze behav-
ioral differences between malware types.

• We focus on network-related and file-related activities
in the FCGs to detect distinctive behavioral patterns
indicative of specific malware types.

• We deploy a 1D-CNN that processes vectorized API
call sequences from the extracted subgraphs for accurate
malware classification.

This paper is organized as follows: Section 2 reviews related
work in malware analysis. Section 3 details our methodology,
including data collection, FCG creation, subgraph mining, and
the classification process. Section 4 presents our results and
analysis. Section 5 concludes the paper by summarizing our
contributions to the field of Ransomware analysis.

II. RELATED WORKS

In recent years, numerous studies have explored malware
and ransomware detection using both dynamic and static
analysis techniques. Static analysis examines malware code
without execution to understand its functionality, purpose,
and potential impact. Conversely, dynamic analysis involves
executing malware in a controlled environment, such as a
Sandbox™, to monitor its real-time behavior and interactions
with other systems. While static analysis is faster and typically
involves extracting API calls directly from code, dynamic
analysis often provides superior accuracy by capturing actual
runtime behaviors [5], [6].

Many malware classification methods rely extensively on
analyzing API calls [2]–[4], [13]–[17]. For instance, Schofield
et al. [11] converted API call sequences into binary categorical
vectors and applied Term Frequency-Inverse Document Fre-
quency (TF-IDF) analyses, subsequently classifying malware
samples using Convolutional Neural Networks (CNN). How-
ever, these sequence-based methods typically treat API calls
as linear text streams, neglecting the structural relationships
and temporal hierarchies inherent in execution flows [32].
Thus, they inadequately distinguish meaningful segments of
API sequences essential for accurate classification.

To address these limitations, researchers have explored
graph-based representations. Hassen and Chan [26] devel-
oped scalable Function Call Graph (FCG)-based classifiers for
Windows malware, while Chuang et al. [27] applied graph
convolutional techniques to Android malware detection. Re-
cent advancements, such as SeGDroid [35] and MASKDROID

[36], utilize sensitive FCG segments or masked graph repre-
sentations, yet rely on full graph contexts rather than subgraph-
level behaviors. Similarly, Jiang et al. proposed the use of
FCG embeddings [43], while Singh and Gaurav used graph-
based neural networks specifically for ransomware detection
[44]. These methods demonstrate that preserving structural
dependencies between API calls significantly enhances both
model robustness and interpretability, but these methods do not
isolate localized behaviors as in our subgraph approach. Ad-
ditionally, existing graph-centric approaches have not specif-
ically targeted differentiating ransomware from general mal-
ware, presenting an important yet underexplored research area.

With the rise of targeted ransomware attacks, studies have
specifically addressed ransomware detection using dynamic
analysis and machine learning [8], [42]. Hernández-Álvarez
et al. [9] employed dynamic analysis combined with machine
learning to distinguish between Locker, Encryptor, and be-
nign software by extracting influential dynamic features using
Cuckoo Sandbox™. Schoenbachler and Krishnan et al. [10]
extended this work by broadly differentiating ransomware
from benign software and other malware types, albeit using
general behavioral features, leaving room for further speci-
ficity and precision.

More recently, research has shifted toward adaptive,
lightweight, and real-time ransomware detection strategies,
aiming to enhance operational practicality without compro-
mising detection efficacy. CanCal [47], for instance, proposes
a lightweight detection system specifically designed for in-
dustrial environments, utilizing real-time monitoring and fine-
grained behavioral analysis to minimize operational overhead.
Similarly, ERW-Radar [45] employs contextual behavioral
detection alongside fine-grained content analysis, effectively
managing detection of evasive ransomware by dynamically
adapting to new obfuscation strategies. These methods high-
light the ongoing shift towards more adaptive and context-
aware detection solutions. Lightweight alternatives like Mal-
HAPGNN [34] and static feature graph construction methods
[33], [37] also aim to reduce detection overhead but often
sacrifice interpretability or behavior specificity.

Practical operational considerations have also prompted
innovative methods like the multi-staged detection frame-
work proposed by [46], which addresses the challenge of
ransomware detection amidst substantial I/O overhead. This
method emphasizes a critical balance between detection per-
formance and operational efficiency, further underscoring the
importance of practical applicability in real-world scenarios.
Other real-time strategies target encoding-based evasion [41]
and entropy-neutralizing techniques [38], [39], [40], further
emphasizing the arms race between detection and obfuscation.

However, despite these advancements, most prior works
remain focused on traditional or broadly-defined feature ex-
traction and detection methods [10]–[12], [15]. These methods
typically overlook detailed isolation and comparative analy-
sis of behavioral interdependencies specifically distinguishing
ransomware from other malware types. A holistic review of
ML-based ransomware detection approaches [42] confirms this



gap, particularly in distinguishing ransomware from generic
malware beyond binary detection.

To bridge this significant gap, our study proposes Ransom-
Net which is a novel, graph-based methodology that explic-
itly isolates and captures critical behavioral interdependencies
within ransomware. Unlike existing methods, RansomNet em-
ploys subgraph mining focused specifically on network and
file related behaviors within Function Call Graphs, signifi-
cantly improving the precision and specificity of ransomware
classification. This approach contrasts with conventional full-
graph classifiers [31], which may obscure critical localized
behaviors through aggregation. Our focused subgraph extrac-
tion approach ensures these distinctive behavioral patterns are
clearly represented, providing enhanced detection accuracy
tailored explicitly for ransomware threats.

III. METHODOLOGY

We propose a dynamic analysis approach using Function
Call Graphs (FCGs), subgraph mining, and a 1D Convolutional
Neural Network to analyze and classify API call sequences to
distinguish between ransomware and other malware based on
their behavioral patterns. This section details our comprehen-
sive methodology, which includes data collection from Cuckoo
Sandbox™ , preprocessing of this data, and specific classifica-
tion techniques. The entire framework is depicted in Fig 1 and
comprises three main phases: dataset preparation, labeled FCG
generation, and CNN implementation using mined subgraphs.

A. Dataset Preparation and Generating Labeled Function
Call Graphs

For our study, we collected a dataset to capture the dynamic
characteristics of each malicious sample. We sourced malware
and ransomware samples from various platforms, including
NTFS123’s MalwareDatabase [18], theZoo [19], Virustotal
[20], and several public GitHub repositories. Goodware sam-
ples were obtained from the PE Machine Learning dataset
[21]. All samples were executed in a controlled environment
using Cuckoo Sandbox™, from which we extracted dynamic
features such as API calls, PCAP data for network analysis,
DLLs, logs, memory dumps, and screenshots. Specifically, we
extracted and maintained a sequential list of API calls for
each malicious and benign file using Python. The number of
samples is detailed in Table I.

TABLE I
DATASET SAMPLES

Sample Type Number of Samples
Malware 229

Ransomware 394
Goodware 271

Total 944

The generation of labeled Function Call Graphs (FCGs)
is a pivotal step in our methodology, encapsulating the be-
havior of malware and ransomware samples via their API
call sequences. This involves extracting API calls from the
dynamic analysis reports generated by Cuckoo Sandbox™ and

constructing graphs where nodes represent API calls and
directed edges denote the sequence of these calls.

1) Function Call Graph Construction: Function Call
Graphs (FCGs) use API call sequences as their primary data
source and are a recognized method in malware detection re-
search [26], applicable to various operating systems including
Windows [27] and Android [28]. Nodes in the graph represent
unique API calls, and directed edges indicate the sequence of
API calls, providing a visual representation of the sample’s
execution flow.

2) Node Labeling Based on API Call Category: Each API
call captured during execution in Cuckoo Sandbox™ offers
insights into the sample’s actions. These are categorized based
on the type of operation, such as network, process, system,
registry, miscellaneous, cryptographic, and file operations [22].
Building on this, each node in the Function Call Graph (FCG)
is labeled according to the category of the corresponding API
call, focusing on network and file operations as these have
been shown to be most effective for classifying malware and
ransomware [7].

The categories used for labeling are:
• Network category API Calls: Nodes for API calls

that facilitate network communication, including data
transmission, DNS queries, and network connections.

• File category API Calls: Nodes for API calls related to
file manipulation, such as creation, deletion, reading, and
writing.

• Other API Calls: Nodes for all other API calls are
labeled as ‘other’.

1) For each API call si ∈ S, create a node vi ∈ V .
2) For each consecutive pair si, si+1 ∈ S, create a directed

edge ei,i+1 = (vi, vi+1) ∈ E.
3) Apply the labeling function L to each node vi based on

the nature of the corresponding API call si.

B. Subgraph Mining and Feature Vectorization

In our earlier study [7], we discovered that communicative
(network-related) and systemic (file-related) features played
a crucial role in enhancing the accuracy of malware classi-
fication using basic classifiers such as Random Forest and
Decision Trees. Motivated by these findings, our current re-
search emphasizes these communicative and systemic features
for subgraph mining. This approach allows us to use network
category and file category subgraphs for our classification task.

Given a labeled function call graph G = (V,E, L), with
subsets S and R of vertices in V defined as S = {v ∈ V |
L(v) = network} and R = {v ∈ V | L(v) = file}, we
outline the process for extracting subgraphs Gs = (Vs, Es)
and Gr = (Vr, Er) corresponding to communicative nodes
vs ∈ S and systemic nodes vr ∈ R, respectively. The key
components of the subgraphs are defined as follows:

• Vs ⊆ V and Vr ⊆ V are the sets of nodes that lie within
a maximum distance d from vs and vr, including vs and
vr themselves.

• Es ⊆ E and Er ⊆ E are the sets of edges that connect
the nodes within Vs and Vr.



Fig. 1. RansomNet Framework

Subgraph mining is performed on the Function Call Graphs
(FCGs) to identify and extract significant patterns indicative
of malicious behavior. Each node within an FCG is evaluated
to determine if it corresponds to the network category or the
file category based on the following structure:

1) Initiate a breadth-first search from each node v in S∪R
limited to a distance d, to identify and assemble the
nodes for Vs or Vr.

2) Include in Es or Er all edges from E that connect the
nodes within Vs or Vr.

The maximum distance d, also known as the Degree of
Separation, is chosen based on the desired scope of interaction
around communicative and systemic operations within the
graph. To find the optimal maximum distance, we employed
an experiment with varying degrees of separation in each
extracted communicative and systemic subgraph. We deployed
our classification model with a small number of samples
and extracted varying lengths of subgraphs. Based on this
experiment, we used a maximum distance of 10 nodes for
each subgraph extraction. The results of this experiment are
shown in Figure 2.

Fig. 2. Optimizing distance for subgraph mining

The extracted subgraphs undergo a process of vectorization,
where each subgraph is transformed into a numerical feature
vector. This vectorization encapsulates the structural and be-
havioral characteristics of the subgraphs, including the count
of communicative, systemic, and normal nodes, as well as the
overall connectivity within the subgraph. The resulting feature
vectors serve as the input for the classification model. The
structure of this task is detailed in Algorithm 1.

C. CNN-Based Classification

Convolutional Neural Networks (CNNs) have been widely
recognized for their efficacy in processing sequential data,
such as API call sequences in malware classification [11].
Inspired by these precedents, we designed a 1-D CNN model
as the classifier to leverage the sequential nature of API calls
for distinguishing between different types of malware.

1) Model Architecture: Our model processes input se-
quences of API calls represented by the matrix X ∈ Rl×d,



Algorithm 1 Subgraph Mining and Feature Vectorization
Input: Function call graph G = (V,E, L), set of network

nodes S = {v ∈ V | L(v) = ’network’}, set of file nodes
R = {v ∈ V | L(v) = ’file’}, degree of separation d.

Output: List of feature vectors for classification model de-
rived from subgraphs Gs = (Vs, Es) and Gr = (Vr, Er).

1: Initialize list of subgraphs subgraphs
2: for each node v ∈ S ∪R do
3: Initiate breadth-first search from v, limited to distance

d
4: Collect all reachable nodes to construct Vs (if v ∈ S)

or Vr (if v ∈ R)
5: Include in Es or Er all edges from E that connect

nodes within Vs or Vr

6: Add the subgraph (Vs or Vr, Es or Er) to
subgraphs

7: end for
8: Initialize list feature_vectors
9: for each subgraph G′ in subgraphs do

10: Vectorize G′ by extracting structural and behavioral
characteristics

11: Append the resulting feature vector to
feature_vectors

12: end for
13: return feature_vectors

where l = 4 denotes the sequence length, and d = 1 signifies
the feature dimension per sequence step. The architecture
comprises the following layers:

1) Convolutional Layer: Applies filters W ∈ R3×1 to
input data, extracting features through convolution. Fea-
tures undergo transformation via the Rectified Linear
Unit (ReLU) activation function:

Ci = ReLU

 2∑
j=0

Wj ·Xi+j + b


where i indexes the output sequence, and b as the bias
term.

2) Pooling Layer: After convolution, an average pooling
operation summarizes the feature maps, reducing their
dimensionality while retaining essential information:

Pi = Average (Ci×2, Ci×2+1)

3) Dense and Output Layers: The sequence ends with
a dense layer followed by a softmax layer, classifying
input into categories by generating a probability distri-
bution:

Softmax(zi) =
ezi∑N
j=1 e

zj

where zi are logits for each of the N categories.

Figure 3 illustrates the process of dimensionality reduction in
our CNN model, providing a clearer understanding of the data
flow and transformations within the network.

Fig. 3. Detailed design of our CNN architecture.

IV. RESULTS

Following the detailed presentation of our CNN-based
methodology, this section provides an analysis of the results
obtained from the application of RansomNet to malware clas-
sification. We compare our model’s performance with estab-
lished baselines and evaluate its effectiveness in distinguishing
between ransomware, malware, and benign software.

A. Dataset and Baselines

Our dataset consists of 612 malicious samples, including
394 ransomware and 218 other malware types, along with
271 benignware samples. We established baselines using three
methodologies for malware classification. The first two, in-
spired by Schofield et al. [11], involve translating API calls
into a categorical vector space and applying Term Frequency-
Inverse Document Frequency (TF-IDF) to create weighted
vectors from API call sequences. The third approach, adapted
from Schoenbachler and Krishnan et al. [10], uses dynamic
analysis to examine network and file behaviors via Cuckoo
Sandbox™ . All experiments and data collection were con-
ducted on a laptop running Ubuntu 20.04, equipped with an
Intel Core i7-10750H processor, 16 GB of RAM, and an
NVIDIA GeForce GTX 1660 Ti GPU. The training spanned
1000 epochs, yielding an accuracy pinnacle of 98.99%.

Unlike traditional vector-based methods, our study utilizes
Function Call Graphs (FCGs) to achieve a deeper and more
structured analysis of malware behaviors. This approach is
particularly effective in identifying intricate patterns and in-
teractions that help distinguish between different malware
types, especially in separating ransomware from generic ma-
licious software. We provide a comparative analysis with
these baseline methods in the section on Function Call Graph
Construction, demonstrating the advantages of our approach.

In our analysis, we evaluated three binary classification
tasks: (1) ransomware vs. general malware, (2) general mal-
ware vs. goodware, and (3) ransomware vs. goodware. For
each task, we report Accuracy, Precision, Recall and F1-Score.
Task (1) represents our primary evaluation-differentiating ran-
somware from other malware—while Tasks (2) and (3) serve
as secondary evaluations to demonstrate RansomNet’s gener-
alization and to benchmark its performance against established
baselines on both malware–benign and ransomware–benign
splits.



B. Ransomware vs Malware

The effectiveness of RansomNet in distinguishing between
ransomware and malware showcased outstanding results,
achieving a precision of 99% and a recall of 100%. These
results not only confirm RansomNet’s robustness but also
demonstrate its superior performance compared to traditional
methods, which typically show lower precision and recall in
similar settings. For instance, categorical encoding methods
generally achieve around 79% in both metrics, and even
the more sophisticated TF-IDF vectorization methods do not
surpass a precision of 93% and recall of 94%. Our approach
significantly outperforms these by focusing on dynamic analy-
sis which captures the nuanced behaviors of ransomware more
effectively.

Moreover, RansomNet attains an overall accuracy of 99%
and an F1-score of 99.5%, reflecting the harmonic mean of
precision and recall. The area under the ROC curve (AUC)
reaches 0.998, indicating near-perfect separability between
classes. A closer look at the confusion matrix reveals zero false
negatives and a false positive rate below 1%, underscoring the
model’s reliability in operational environments.

These metrics together demonstrate that mining subgraphs
of file and network-related API calls allows RansomNet to
capture critical behavioral signatures of ransomware, enabling
rapid and precise threat triage in real-world security deploy-
ments.

Fig. 4. Ransomware vs Malware Classification

C. File and Network API-Call Pattern Visualization

To better understand the distinction between ransomware
and general malware in the dynamic domain, we project the
high-dimensional file and network API-call features into a 2D
embedding using t-Distributed Stochastic Neighbor Embed-
ding (TSNE). Figure 5 presents this visualization, illustrating
clear clusters of ransomware behaviors alongside overlapping
regions where separation is more challenging.
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Fig. 5. TSNE projection of file and network API-call sequences for ran-
somware and general malware.

Figure 5 highlights two main observations: (1) distinct
“islands” of ransomware samples, corresponding to families
with stereotyped execution patterns, and (2) a mixed cen-
tral region where ransomware and malware exhibit similar
dynamic behaviors. These insights confirm that while file
and network calls are discriminative for certain ransomware
groups, incorporating richer sequence and contextual features
is necessary to resolve ambiguous cases.

D. Ransomware vs Goodware

The classification of ransomware versus goodware (benign
software) also highlighted the efficacy of our model. Ran-
somNet achieved a precision of 97% and a recall of 99%,
indicating its high accuracy and low rate of false negatives.
These results are particularly important in practical scenarios
to avoid the costly mistake of misidentifying benign applica-
tions as ransomware, which can lead to unnecessary disruption
and operations overhead.

TABLE II
RANSOMWARE VS GOODWARE CLASSIFICATION RESULTS

Method Accuracy Prec. Recall F1 Score
Cat. Enc. [11] 0.84 0.81 0.81 0.82

TF-IDF Vec. [11] 0.94 0.92 0.92 0.93
Dyn. Anal. [10] 0.85 0.88 0.88 0.84

RansomNet 0.99 0.99 0.99 0.98

E. Malware vs Goodware

For the task of differentiating malware from goodware,
RansomNet again demonstrated strong performance with a
precision of 95% and a recall of 96%. The high F1 score of
97% reflects the balanced accuracy and precision of the model,
ensuring that it effectively identifies malware while minimiz-
ing false positives, which is crucial for maintaining system
integrity and user trust in security applications. Furthermore,



TABLE III
MALWARE VS GOODWARE CLASSIFICATION RESULTS

Method Accuracy Prec. Recall F1 Score
Cat. Enc. [11] 0.80 0.83 0.79 0.79

TF-IDF Vec. [11] 0.83 0.84 0.83 0.84
Dyn. Anal. [10] 0.79 0.82 0.86 0.86

RansomNet 0.97 0.95 0.96 0.97

F. Impact Of Classifiers

When we compared our CNN model with traditional al-
gorithms on the same dataset, the CNN model was much
superior, outstripping Random Forest by approximately 8%,
Decision Tree by nearly 15%, and SVM by a notable 22%. The
CNN’s hierarchical feature extraction captures local sequence
motifs in subgraph-structured API call data, which flat clas-
sifiers like RF and DT fail to model effectively These results
can be seen in Table IV.

TABLE IV
RANSOMWARE VS MALWARE RESULTS USING DIFFERENT CLASSIFIERS

Classifier Accuracy Precision Recall F1 Score
Random Forest 0.91 0.88 0.98 0.94
Decision Tree 0.84 0.88 0.94 0.92

SVM 0.77 0.78 0.84 0.87
CNN 0.99 1.00 0.99 1.00

G. Consistency and Generalizability Evaluation via 5-Fold
Cross-Validation

Further testing the model’s robustness, a 5-fold cross-
validation revealed consistent accuracy with minimal variance,
underscoring the model’s generalizability. This is presented in
Table V. Unlike simpler TF-IDF or categorical vectorization,
which reduces text to a bag of words or tokens, RansomNet’s
approach to feature extraction—from graph representations
of API call sequences—captures the behavioral complexity
of ransomware. This technique enables the recognition of
sequential and contextual interdependencies within API calls,
contributing to the high precision and recall rates.

TABLE V
ACCURACIES OBTAINED FROM 5-FOLD CROSS-VALIDATION.

Fold Number Accuracy (%)
1 97.76
2 99.23
3 99.61
4 98.69
5 99.61

K-Fold Cross-Validation Accuracy: 98.99± 0.69

The superior accuracy and detailed feature extraction capa-
bilities of the RansomNet model make it exceptionally well-
suited for deployment in incident response systems. Its ability
to discern between ransomware and general malware ensures
that incident responders can quickly isolate and mitigate
ransomware threats, significantly enhancing response efficacy.

V. CONCLUSION

In this work, we introduced RansomNet, an innovative
framework designed to effectively differentiate ransomware
from other types of malware through dynamic analysis, sub-
graph mining, and convolutional neural network (CNN)-based
classification. We utilized Cuckoo Sandbox™ for extracting
dynamic API call sequences, subsequently constructing Func-
tion Call Graphs (FCGs) to capture intricate behavioral inter-
actions. By applying subgraph mining techniques specifically
to network and file-related API call sequences, we successfully
isolated distinctive patterns indicative of ransomware behavior.

Our proposed methodology leveraged vectorized represen-
tations of these mined subgraphs as inputs for a 1D CNN
model (RansomNet-CNN), achieving exceptional classifica-
tion performance. Specifically, the RansomNet-CNN model
demonstrated a precision of 99% and recall of 100

We further validated the robustness and generalizability of
our model through extensive evaluation, including comparative
analysis with multiple baseline methods and classifiers, as well
as 5-fold cross-validation, which consistently demonstrated
high accuracy with minimal variance. These results emphasize
RansomNet’s capability in accurately identifying ransomware
by effectively capturing behavioral nuances missed by simpler
detection techniques.

Overall, RansomNet provides a sophisticated yet practical
solution to ransomware classification challenges, enabling
enhanced real-time threat identification and response. In future
work, we aim to integrate RansomNet into real-time cyber-
security infrastructures, such as EDR systems or antivirus
engines. By streaming dynamic API traces into the subgraph
mining pipeline, RansomNet could serve as a lightweight
behavioral layer to augment traditional signature-based de-
tection. This hybrid deployment would enable rapid and pre-
cise identification of ransomware threats post-execution, even
in resource-constrained environments. We also plan to ex-
plore adaptive retraining mechanisms to maintain effectiveness
against evolving ransomware variants.
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